国开电大21秋学期高等数学基础形考任务作业三答案

付费内容 购买记录

隐藏答案
用户购买价格:5金币
本套试题答案购买后显示
购买本答案

(数学里面公式只能以图片形式显示)
【上面答案为下列试题答案,请核对试题后再购买】www.botiku.com零号电大
1.jpg 2.jpg
高等数学基础第三次作业

第4章  导数的应用
(一)单项选择题
  ⒈若函数 满足条件( ),则存在 ,使得 .
  A. 在 内连续
B. 在 内可导
  C. 在 内连续且可导
D. 在 内连续,在 内可导
  ⒉函数 的单调增加区间是( ).
  A.                      B.  
  C.                     D.  
  ⒊函数 在区间 内满足( ).
  A. 先单调下降再单调上升        B. 单调下降
  C. 先单调上升再单调下降        D. 单调上升
  ⒋函数 满足 的点,一定是 的( ).
  A. 间断点                      B. 极值点
  C. 驻点                        D. 拐点
⒌设 在 内有连续的二阶导数, ,若 满足(  ),则 在 取到极小值.
  A.         B.  
  C.         D.  
  ⒍设 在 内有连续的二阶导数,且 ,则 在此区间内是(  ).
  A. 单调减少且是凸的             B. 单调减少且是凹的
  C. 单调增加且是凸的             D. 单调增加且是凹的

(二)填空题
  ⒈设 在 内可导, ,且当 时 ,当 时 ,则 是 的            点.
  ⒉若函数 在点 可导,且 是 的极值点,则             .
  ⒊函数 的单调减少区间是         .
  ⒋函数 的单调增加区间是         .
  ⒌若函数 在 内恒有 ,则 在 上的最大值是         .
  ⒍函数 的拐点是                .

(三)计算题
  ⒈求函数 的单调区间和极值.
  ⒉求函数 在区间 内的极值点,并求最大值和最小值.
  ⒊求曲线 上的点,使其到点 的距离最短.
  ⒋圆柱体上底的中心到下底的边沿的距离为 ,问当底半径与高分别为多少时,圆柱体的体积最大?
⒌一体积为V的圆柱体,问底半径与高各为多少时表面积最小?
⒍欲做一个底为正方形,容积为62.5立方米的长方体开口容器,怎样做法用料最省?

(四)证明题
⒈当 时,证明不等式 .
⒉当 时,证明不等式 .


回复

使用道具 举报

快速回复 返回顶部 返回列表