离散数学学习周期02任务_0004答案

02任务_0004答案.txt

下载:378 次


一、单项选择题(共 10 道试题,共 100 分。)              
1.  设函数f:N?N,f(n)=n+1,下列表述正确的是(    ). A. f存在反函数
B. f是双射的
C. f是满射的
D. f 是单射函数

        2.  设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为(    ).
A. 2
B. 3
C. 6
D. 8

        3.  设集合A={a},则A的幂集为(    ). A. {{a}}
B. {a,{a}}
C. { 201093152748138.jpg ,{a}}
D. { 201093152830247.jpg ,a}

        4.  设A、B是两个任意集合,侧A-B = ?? (    ). A. A=B
B. A?B
C. A?B
D. B=?

        5.  设集合A = {1, 2, 3, 4, 5}上的偏序关系的哈斯图如右图所示,若A的子集B = {3, 4, 5},则元素3为B的(    ). 201093155147200.jpg

A. 下界
B. 最小上界
C. 最大下界
D. 最小元

        6.  如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有(    )个. A. 0
B. 2
C. 1
D. 3

        7.  设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C =(    ).
A. {1, 2, 3, 4}                                            
B. {1, 2, 3, 5}  

C. {2, 3, 4, 5}  
D. {4, 5, 6, 7}


        8.  设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的(    )闭包. A. 自反
B. 传递
C. 对称
D. 自反和传递

        9.  设集合A = {1, a },则P(A) = (    ). A. {{1}, {a}}
B. { 20109315302813.jpg ,{1}, {a}}
C. {{1}, {a}, {1, a }}
D. { 201093153112685.jpg ,{1}, {a}, {1, a }}

        10.  设A={a,b},B={1,2},C={4,5},从A到B的函数f={, },从B到C的函数g={<1,5>, <2,4>},则下列表述正确的是(    ).     A. f°g ={, }
B. g° f ={, }
C. f°g ={<5,a >, <4,b >}         
D. g° f ={<5,a >, <4,b >}

回复

使用道具 举报

快速回复 返回顶部 返回列表